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NanoPhotonics

« An opportunity to create smart devices by
combining nanotechnology and photonics

e 1880 Bell: Photophonic transmitter .fl,

e 1905 Einstein: measured sugar
molecule size ~1 nm

e 1985 Tomalia: successful
synthesis of star burst polymer (dendrimer)

« 2003 ARP: dendrimer based photonics
technology that resulted in a high power
terahertz source and applications
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Dendrimer: A polymeric nanomaterial

e 3-D core-shell molecule

 Generation: G0-G11

e Size: 4-12nm

e Multiple functionality:
terahertz emitter,

nPIC
Terahertz NISEgUde Terahertz
imaging /generation
' Electro-optic/

terahertz
Sensor

Interconnect

. : Fiber
waveguide, modulator, oeting array
amplifier, and band gap Vet e

_ Photonic SNy
e Established route for crystal Modulator
transition to production Amplifier
e Cost-effective
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ARP: Electro-optic Dendrimer

e High @ material required for THz
generation: Inorganics - low 2

e Dendrimer’s EO properties can be = o
enhanced by doping 7

» Potentially 64 fold increase L5 e
of 4@ for G3; higher for higher generation B SRR T o

 High field poling required TR NS T oI Y

» There are many chromophore R
and/or dopants to choose from

£2=n fﬂ(COSsQ)
n = dipole density
f = local field, #= hyperpolarizability
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Dendrimer EO properties
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Sketch of dipole orientation in (a) unpoled and (b) corona poled dendrimer film.
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Poling I-V: poling current in dendrimer film.
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Refractive Index & EOC -

Pockels effect
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_ Terahertz Radiation (T-Rays)

Chart of the Electromagnetic Spectrum
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terahertz gap

Terahertz spectroscopy (THz-TDS) has unique applications
1 THz = 33.33 cm™ (wave numbers) or 0.004 eV photon energy.

THz spectroscopy covers 0.3 THz to ~20 THz (from 10 to 600 cm™); most
work done between 0.3 and ~3 THz range.

THz can detect “intra-molecule” vibrations as well as “inter-molecule”
vibrations

THz can detect changes in individual bonds in protein complexes =
monitoring structural and conformational changes in biological reactions.

T-rays can see through obstacles: fog, mist, box, wall, etc.
THz technology has a sound market potential.
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Future of Terahertz Technologl

 Medicine/Biological Sciences:
— Biomolecular interactions, Label-free DNA analysis, Pharmaceutical process,

Drug discovery, Medical diagnostics, Early detection of skin cancer, bone
density, Endoscopy, Mammography, Dentistry (detection of tooth decay),
Food industry process control (moisture detection), pill inspection, etc.

e Scientific:

Earth remote sensing, Environmental sensing (pollution detection), Plasma
diagnostics, molecular signature spectroscopy

« DOD, NASA, Security and Screening

Active and passive imaging through dust, smoke, fog etc; all weather active
and passive seekers; secure communications; spectrographic sensing of
explosives, gases and biologicals.

high rate and secure data transfer, flame analysis (rocket or jet engine burn
optimization)

Homeland Security - concealed weapon identification, biological threat
detection

detection of voids in the space shuttle foam
passenger screening, hidden weapons detection, contraband detection
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THz Biosensing

Theoretical calculations predict many resonances in the THz
frequency range associated with inter-backbone excitations
of DNA molecules, such as propeller-twist, hydrogen-bond
breathing, and base-roll and base-shift vibrational modes
(Van Zandt & Saxena 1989; Zhuang et al . 1990).

The presence of these modes indicates a unique potential of
THz technologies for the label-free detection of the DNA
binding state.

Investigations by Raman and Fourier-transform techniques
on hybridized DNA molecules can not address binding state
specific analysis (see, for example, Urabe & Tominaga 1982;
Woolard et al . 1997)

Recently, we demonstrated the use of the THz Spectroscopy
of the binding state of DNA at THz frequencies as a potential
method for label-free gene detection.
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National Initiatives

Comprehensive, consistent, and high quality THz spectral libraries are required
to support further development of THz sensing systems and to support spectral
sensing applications — Battelle Science and Technology Center, MD.

National Signatures Program (NSP)

* NSP is a joint service, multi-agency
venture initiated by the DIA

e Objective: to meet increased
demand for signatures intelligence
— Support our soldiers on the battlefield
— Monitor the proliferation of WMD

— Support Homeland Defense and the
Global War on Terrorism

* NSP catalogs and disseminates
sighatures to end users
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THz Activities/news

e Radiation source to further cancer research

Thursday, July 6th, 2006 Plans to construct Europe’s most intense terahertz (THz)
radiation source to further development of cancer research are underway at the
University of Liverpool.

e Terahertz Biochip for Detecting lllicit Drug Powders, High-speed Terahertz
Imager at 2006 CLEO/QELS Meeting

Wednesday, April 26th, 2006 Researchers from around the world will present new results in
optics, photonics and their applications at the 2006 CLEO/QELS meeting from May 21-26,
2006.

e SPEC 2008: Shedding Light on Disease: Optical Diagnosis for the New
Millenium Sao Jose dos Campos, Sao Paulo, Brazil. October 25-29, 2008

e Terahertz success relies on research investment

Tuesday, October 14th, 2008 Terahertz radiation holds great promise for enhanced security
systems, industrial inspection and sophisticated spectroscopy. Marie Freebody speaks to
Hartmut Roskos to find out about the progress that has been made so far and the key
challenges that remain.

Source: THz Science & Technology Network: http://www.thznetwork.org/
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Terahertz generation

Technology

Advantages

Challenges

Electro-optic
rectification

(EOR)

« Easy alignment

* Broadband spectrum
* High time resolution
* Power scalable

* Needs femto pulsed laser

» Output power depends on
electro-optic properties

* High cost

Diff. Freq. Gen.
(DFG)

 Narrow line widths
e Tunable, Pulsed or CW
e Lower cost

* Two lasers needed
* Difficult alignment
* Many unknowns

Waveguide

e Can use both EOR, DFM

» Alignment and packaging

Photo-conductor

« Commercially available

e Low output power, ~ nW-uW

Reactor/
Accelerator/

Synchrotron

* Higher output power

* Huge size and cost
* Needs dedicated facility, staff
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Main drawback:
Cost and Size

Requires femto-second
pump laser (not too
many supplier). The
femto-laser needs a
pump laser of its own,
an active water cooling
system, and also a big
bulky power supply.
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Value Proposition

e Femto-second laser (EOR) route Is
expensive yet limited in power

e DFG based spectrometer is a new disruptive

route

e Labe
and ¢

e Labe

-free molecular (DNA) identification
uantitation

-free SNP detection

« Expandable to scanning spectrometry, THz
Imaging and THz Microscopy products
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Terahertz generation by Electro-optic Rectification
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THz-Time Domain Spectroscopy (EOR)
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TDS — Fourier Spectrum:
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_Difference Frequency Mixing
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U. Simon, C. E. Miller, C. C. Bradley, R. G. Hulet, R. F. Curl, and F. K. Tittel, “Difference-frequency
generation in AgGasS, by use of single-mode diode-laser pump sources,” OPTICS LETTERS / Vol. 18,
No. 13/ July 1, 1993, p 1062-1064.
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Difference Frequency Example
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Difference Frequency Mixing in Dendrimer
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DFM Power

e 3.4 mW DFM power
generated from
dendrimer emitter at
5.49 W combined
pump power (diodel
+ diode2).

* This power can be
Increased with
higher pump power

e Further increase in
power is possible
via waveguide
structure proposed
by ARP.

35

3.0 -

25 -

DFG Power (mW)

Total Pump Power (W)

DFG = a*w" i,
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THz-TDS (DFG)
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DFM Fourier Spectrum

Fourier Spectrum
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Fourier transform frequency spectrum of the temporal pulse. The frequency
spans a wider broadband up to 20 THz.
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Label-free DNA Detection (EOR)
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Temporal pulses of a 25-mer oligonucleotide, 2.72 pMole ssDNA
(green) and dsDNA (red) obtained by subtracting the Blank
substrate pulse from the respective samples. (Samples courtesy
of Penn State Molecular Synthesis Facility).
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25-mer DNA Spectra (EOR)
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Temporal signal of DNA samples (DFG)
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Temporal spectra of 25-mer oligonucleotides at

Double stranded DNA different concentrations. Systematic concentration
molecule showing 9 dependent transmission peak (absorption) is
base pairs. observed. (Samples courtesy of Dr. Bruce Stanley of

Penn State Molecular Synthesis Facility).
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DNA Quantitation (DFG)

e Transmission
exhibits
concentration
dependence over
wide range:
nanoMole to
femtoMole

«Can be calibrated
for other molecular
species

«Combined with the
Fourier spectra,
this allow unique
identification and
guantitation tool

—~

Transmission Peak (a.u
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Concentration dependence of transmission peak of
DNA samples. The data follow the Concentration
dependent power law within the experimental error.
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Significance of DNA measurements

« Theresults clearly demonstrate the ability of the
spectrometer to discern a minute amount of biomolecules.

 From measurements of known concentration, calibration
curves can be established for different molecular species.

« The importance of this ability is in the fact that it will be
able to identify a disease causing pathogen that may bind
to the DNA causing mutation that can not be identified by
any other method.

 This capability can be used as a diagnostic tool, as well as
for studying molecular reactions such as mutation.

* (a) quantitative mRNA expression analysis without
expensive fluorescent labeling or (b) "presence/absence”
type experiments e.g., for biodefense field sensors for
biological toxic's like cholera or viruses.
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Single-base mutation

“As THz sensing is a direct measure for the
amount of hybridization in a DNA sample, it
was also demonstrated that this identical
approach can be used to observe even single-
base mutations in DNA samples (Nagel et al .
2002a).”

P. Bolivar, M. Nagel, F. Richter, M. Brucherseifer, H. Kurz, A. Bosserhoff and R.
Buttner, Label-free THz sensing of genetic sequences: towards ‘THz biochips’,
Phil. Trans. R. Soc. Lond. A (2004) 362, 323-335.
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Imaging with DFM T-rays

A metallic knife hidden behind a thick

A hidden blade behind a cardboard dark cloth is revealed by the terahertz
is revealed with the terahertz beam.
source.
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Molecular Signature Spectra
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Ref. http://www.frascati.enea.it/THz-BRIDGE/database/spectra/searchdb.htm
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Pharmacological Applications: Polymorphs

P.F. Taday, I.V. Bradley, D.D. Arnone and M. Pepper, "Using Terahertz Pulse
Spectroscopy to Study the Crystalline Structure of a Drug: A Case Study of

the Polymorphs of Ranitidine Hydrochloride,” Journal Of Pharmaceutical
Sciences, vol. 92, no. 4, pp. 831-838, April 2003. TERAVIEW
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=
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frequency / THz

T-Ray observations by Teraview of the two conformationally distinct
polymorphic forms of ranitidine hydrochloride (a primary constituent
of common heartburn medication) have been made on commercial
pressed tablets with definite distinguishing spectral characteristics
that might be attributed to vibrational phonon modes.
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Imaging of Biological Tissues

Connectiye tissue THz Image of excised and

fixed tumor using TDS

Ref. Karsten et.al. , Physics in
Medicine and Biology, v.47, 2002, pp.
3743-3748
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a wax-mounted thin-cut canine’s basal cell tumour: object

Figure 3. (a) Photograph of the sample. | THz.

' : "W TH. er transmission image at
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Medical Application: THz Imaging of Basal Cell

Carcinoma in-vivo by TeraView

T-Ray Imaging is being applied for the first time to medical diagnostics

Below: In Vivo and EX Vivo imaging of Basal Cell Carcinomas using the
transportable TPl System developed by TeraView Ltd.

In vivo TPI™ images of basal cell carcinoma Ex vivo TPI™ images of basal cell carcinoma

recorded with TPl scan recorded with TPl scan
Visible picture of patient
forehead with suspect lesion Uniform low

BCC on upper forearm TPI shows buried tissue / ahs orption (green) by
_ : b healthy tissue

4 Large ‘hot spots’ show
"u 5 huge, invisible tumour
Where is the lesion? under surface of skin
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Avidin-Biotin Binding/Disassociation

Disassociation of Avidin-Biotin using TDS
Ref. Mickan, X-C Zhang et.al. , Physics in Medicine and Biology, v.47,
2002, pp. 3789-3795, RPL

unbound bound

=05

s AT 15 20

Dhelay Bine (s

Fioure 4. Time-domain differential T-ray pulses (outpu from LIAY). These wavelorms have
o been normalized 1o the peak of the biotin-avidin waveform and smoothed using a 0.15-0.25 THz
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hand-pass filier, The three cases shown are (19 the signal from the biotin—avidin interlace, £2) pomse
15 svslem ‘no

from topographic vaviations in the pure avidin film and (3) inherent noise in the DTI
s than the thickness ol the

gample’. The variability in the biotin-avidin aver multiple scans s les
nloted line. Each waveform shown was measured with a ime constant of | 5 on LIAZ.
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Figure 3. Biosensor shde conhigurations used i TS, The two slides, (a) biotin-avidin slide
and (b} pure avidin test slide, were prepared as detailed in section 2, and mounted for DTDS as
in ().
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Concluding remarks

e Creating value from innovation.

e Solving problems in biomedical,
pharmaceutical, proteomics, genomics,
and other ‘omics.

 Dendrimer based system can bring the
cost down and improve the performance

 Opportunity for investment to tap into
unmet market needs

« Ample opportunity of economic growth
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Photonic components

-

Demonstration of photonic components from dendrimer
Fabricated at Penn State University Nanofab Facility
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