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Abstract 

 A series of poly(amido amine) dendrimers were constructed by atomistic simulation 

under Cerius2 environment on a Silicon Graphics computer. A systematic molecular 

dynamics calculation has been carried out on energy minimized structure of generations 0 

through 6. Several dynamic properties have been predicted. These predictions provide insight 

about expected behavior of the real system and are useful in designing experiments to 

measure such properties. For instance, the radii of gyration computed from model structures 

agree with the experimentally determined values.  
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A. Introduction 

Molecular dynamics (MD) is a force-field based simulation method that is useful to 

understand atomic level mechanism of physical phenomena at nonzero temperatures on a 

picosecond timescale.  In contrast, molecular mechanics refers to methods that do not include 

temperature effects.  The usefulness of MD in probing fundamental properties of 

macromolecules has been recognized by applying it to various systems [1,2].  For instance, it 

was recognized via MD that the atoms in a protein molecule are in a state of constant motion 

[1].  Since the timescale of this motion is of the order of picosecond, experimental techniques 

are not often able to resolve the instantaneous motion of the molecule.  Computer simulation 

tools provide us with the ability to visualise the molecular conformation on this extremely 

small timescale.  For example, Fig. 1 depicts 5 conformations of a generation 3 

poly(amidoamine) (PAMAM) dendrimer molecule in vacuum.  The last picture (45.7 ps) of 

Fig. 1 has the lowest energy. 

In this article we first review the theoretical premise of MD as implemented by 

Cerius2 simulation environment
†
.  We then report the results of MD calculations of several 

generations of poly(amido amine) (PAMAM) dendrimers carried out on a Silicon Graphics 

computer.  In particular, the constant-volume/constant-temperature dynamics (also called 

NVT dynamics) calculations were performed to probe a number of physical properties.  The 

NVT dynamics allow the system to exchange heat with the environment at a controlled 

temperature and constant volume.  The algorithm allows one to control the kinetic 

                                                 
†
 Cerius2 is a registered trade mark of Molecular Simulation Inc. 
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temperature of a system to quickly bring it to equilibrium at a given temperature or, alternatively, 

one can control the thermodynamic temperature to generate the correct statistical ensemble, so 

that probability of occurrence of a certain configuration obeys the laws of statistical mechanics.  

The initial input temperature is used for generating a Maxwell-Boltzmann distribution of initial 

atomic velocities.  Velocities are assigned randomly to individual atoms so that the distribution is 

around the specified target temperature. 

Once a dynamics session is run successfully, the results (stored in a "trajectory" file) then 

can be analyzed to calculate a number of physical quantities.  Several types of analyses can be 

performed.  The list include statistical analysis of properties, calculation of diffusion constants 

from mean-square displacements, calculation of the dipole-dipole autocorrelation function and 

power spectrum, and analysis of property fluctuations.  Data can also be analyzed to obtain the 

velocity autocorrelation function and power spectrum.  Structural analysis can also be performed, 

where the radial distribution function is calculated and the structure factor is obtained from 

Fourier transform of the radial distribution function. 

B. A Review of Molecular Dynamics Method 

In this section we present a general review of the key components of MD method.  The 

aim here is to gain a “feeling” about subsequent computation, therefore, details have been 

omitted.  The complete mathematical description of a molecule, including both quantum 

mechanical and relativistic effects, is a formidable problem, due to the small scales and large 

velocities.  However, molecular mechanics and dynamics are based on empirical data that 

implicitly incorporate all the relativistic and quantum effects.  A given problem, in general, is 

described by the nonrelativistic, time-independent form of the Schrödinger equation, 
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  ),(),( rRErRH  , (1) 

where, H is the Hamiltonian for the system, E is the energy and  is the wavefunction, R is the 

coordinate of nucleus and r is the coordinate of electron. 

Eq. (1) is quite general but too complex for any practical numerical computation.  Since 

the electrons are several thousands of times lighter than the nuclei, and therefore possess a much 

faster motion, Born and Oppenheimer (1927) proposed that the motion of the electrons can be 

decoupled from that of the nuclei, giving two separate equations.  The first equation describes 

the electronic motion: 

);();( RrERrH   (2) 

and depends only parametrically on the positions of the nuclei.  Eq (2) defines an energy E(R), 

which is a function of only the coordinates of the nuclei.  This energy is usually called the 

potential energy surface.  The second equation then describes the motion of the nuclei on this 

potential energy surface E(R): 

)()( RERH   (3) 

A direct solution of Eq. (2) is the area of ab initio quantum chemical computation.  There 

are many codes that provide such ab initio computation facility, such as Gaussian, CADPAC, 

Hondo, GAMESS, DMol, and Turbomole.  Semiempirical codes such as ZINDO, MNDO, 

MINDO, MOPAC, and AMPAC also solve Eq. (2), but they approximate many of the integrals 

with empirical functions.  The common feature of these programs, though, is that they solve for 

the electronic wavefunction and energy as a function of nuclear coordinates.  In contrast, 
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simulation engines provide an empirical fit to the potential energy surface. 

B. 1. Empirical Fit to the Potential Energy Surface 

 

Solution of Eq. (3) provides the structure or time evolution of a model.  As written, Eq. 

(3) is the Schrödinger equation for the motion of the nuclei on the potential energy surface.  In 

principle, Eq. (2) could be solved for the potential energy E, and then Eq. (3) could be solved.  

However, the effort required to solve Eq. (2) is extremely large, so usually an empirical fit to the 

potential energy surface, commonly called a forcefield (V), is used. Since the nuclei are 

relatively heavy objects, quantum mechanical effects are often insignificant, in which case Eq. 

(3) can be replaced by Newton's equation of motion: 

2

2

dt

Rd
m

dr

dV
  (4) 

 

B. 2. Molecular Dynamics and Mechanics 

The solution of Eq. (4) using an empirical fit to the potential energy surface E(R) is called 

molecular dynamics (MD).  On the other hand, molecular mechanics ignores the time evolution 

of the system and focuses on finding particular geometries and their associated energies 

(commonly known as conformation) and other static properties, such as, equilibrium structures, 

transition states, relative energies, and harmonic vibrational frequencies.  Since MD computation 

process keeps track of the system configuration at each step of evolution, a series of dynamic 

properties can be obtained by analyzing the trajectories. 

B. 3. The forcefield 

The set of energy components used for the empirical fit to the potential energy surface is 

called the forcefield.  It contains the necessary building blocks for the calculations of energy and 
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force.  The goal of a forcefield is to describe entire classes of molecules with reasonable 

accuracy.  The forcefield engine interpolates and extrapolates from the empirical data of the 

small set of models used to parameterize the forcefield to a larger set of related models.  Some 

forcefields aim for high accuracy for a limited set of element types, thus enabling good 

prediction; other forcefields aim for the broadest possible coverage of the periodic table, with 

necessarily lower accuracy. 

The interaction components in a forcefield is described in terms of a model’s internal 

degrees of freedom i.e., bonds, angles, and torsions.  This approach stems from the analogy of 

vibrating balls connected by springs to describe molecular motion.  However, it must be noted 

that such models have limitations.  

B. 4. The Energy Expression 

The actual coordinates of a model combined with the forcefield data create the energy 

expression for the model.  This energy expression is the equation that describes the potential 

energy surface of a particular model as a function of its atomic coordinates.  The potential 

energy of a system can be expressed as a sum of valence (or bond), crossterm, and nonbond 

interactions.  

Most simulation engines provide a number of forcefields – individual forcefield varies in 

the total number of terms used and the functional forms used to describe those terms.  For 

example, a general, summed forcefield has the following form [3]: 
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 (5) 

Here, the first four terms are sums that reflect the energy needed to stretch bonds (b), bend 

angles () away from their reference values, rotate torsion angles () by twisting atoms about the 

bond axis that determines the torsion angle, and distort planar atoms out of the plane formed by 

the atoms they are bonded to ().  The next five terms are cross terms that account for 

interactions between the four types of internal coordinates.  The final term represents the 

nonbond interactions as a sum of repulsive and attractive Lennard-Jones terms as well as 

Coulombic terms, all of which are function of the distance rij between atom pairs.  The forcefield 

defines the functional form of each term in this equation as well as the parameters such as Db, , 

and b0.  The forcefield also defines internal coordinates such as b, , , and  as a function of the 

Cartesian atomic coordinates, although this is not explicit in Eq. (5).  For more details on 

forcefields available to C2 simulation engine, please consult MSI manual [3] or their web page at 

the url:  

http://www.chem.cmu.edu/courses/09-560/docs/msi/ffbsim/2_Forcefields.html. 

C.  Application of Molecular Dynamics to PAMAM Dendrimers 

C.1.  Energy Components and Radius of Gyration 

 In what follows, we describe the results of constant-volume/constant-temperature (NVT) 

dynamics calculations carried out on several generations of PAMAM dendrimers. The molecules 
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were first constructed by atomistic simulation using a script that runs under Cerius2.  The script 

implements an algorithm that first produces a structure of lowest full generation with minimum 

energy conformation.  The next higher generation is then built by adding repeat units to the 

minimum energy of previous generation, and so on.  However, as built, the final structure is not a 

minimum energy state, mainly because of van der Waals overlapping.  Therefore, the initial 

geometries of each generation were optimized by energy minimization procedure.  The 

conformational structure was obtained by molecular mechanics using a CFF91 [5,6] force field.  

Fig. 2 shows the energy minimized structure of generation 0 through 6 (G0G6) PAMAM 

dendrimers.  This structure was then subjected to 50 ps of molecular dynamics at 300 K.  Fig. 3 

shows the time-evolution of various energy components of a generation 3 (G3) PAMAM 

dendrimer molecule and Fig. 4 shows the variation of the radius of gyration, Rg, of the same 

molecule during the dynamics.  We subsequently used the Rg values for monolayer model 

calculations [7].  Fig. 5 shows the time-evolution of radius of gyration of G1 through G6 

PAMAM dendrimers.  Several dynamic properties computed from the MD calculations for 

several generations of PAMAM dendrimers are discussed here. 

C.2.  Self-Diffusion 

Diffusion is the process whereby an initially non-uniform concentration profile is 

smoothed in the absence of flow or drift.  Diffusion is generally caused by the molecular motion 

of the particles in the ensemble; this motion is described by Fick’s law [7].  Diffusion of a 

labeled species among otherwise identical solvent molecules is called self-diffusion.  
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Fig 2.  "Frozen-in-time" structure of PAMAM dendrimers (not in scale). 
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Figure 3.  Variation of energy components during time-evolution of a G3 PAMAM dendrimer 

molecule calculated in vacuo. 
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Figure 4.  Time-evolution of radius of gyration of a G3 molecule during dynamics calculation in 

vacuo.  The initial Rg (=16.8Å) fell to a stable value of 13.25Å after 50 ps of 

dynamics. 

 

Figure 5.  Time-evolution of Rg of PAMAM dendrimers during dynamics simulation in vacou 

(G1G6). 
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To compute the self-diffusion coefficient, one first must calculate the mean-square  

displacement (MSD), given by, 

 



n

i

irimr
n

rtrm
1

22
)()(

1
)()(MSD , (6) 

where, and m is the maximum number of points allowed for the MSD calculation ( = max. 

simulation time in picoseconds) and 0 < m + n = k, n being the number of data points used for 

averaging, i the increment and k the total number of frames.  The MSD is computed as a function 

of the position of each diffusing particle.  The self-diffusion constant is obtained using the 

Einstein relation [6]: 

 
2

)(
6

1
rtr

Nt
D  , (7) 

where, N is the number of atoms, r is the position of the particle at time t.  

 Fig. 6 shows the MSD vs. time graphs for G1- G6.  The self-diffusion constant is 

determined from the slope of the least-squares linear fit line to the MSD.  For instance, a least-

squares fit to the linear portion (~30 ps) of MSD plot of generation 3 (G3) PAMAM dendrimer 

yields the self-diffusion coefficient D = 8.4  10
-5

 cm
2
/s.  Fig. 7 shows the self-diffusion 

coefficients for several generations of this class of dendrimers. 

C.3.  Velocity Autocorrelation Function 

The velocity autocorrelation (VAC) function is an equilibrium property of the system, it 

describes correlations between velocities at different times along an equilibrium trajectory.  The 

VAC function can be used as an independent route to test the calculation of the diffusion 

coefficient via Green-Kubo relation [7] 

 



0

)0()( xx vvdD   (8) 
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where, tt   is the time coordinate, vx is the x-component of the particle velocity.  In terms 

of MD trajectory, the autocorrelation function C ))0()(( xx vv  is defined as follows: 

 



n

i

iVimV
n

mC
1

)()(
1

)( , (9) 

where, V is the velocity, m is the maximum number of points allowed for the autocorrelation 

function calculation (=max. simulation time in ps), 0 < m + n = k, n is the number of data points 

used for averaging, i is the increment, and k is the total number of frames. 

 

Figure 6.  MSD vs. time of G0-G6 PAMAM dendrimer. 
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Figure 7.  Self-diffusion coefficient computed from MSD for G1 to G6 PAMAM dendrimers. 

 

One can compute a useful quantity, the power spectrum, by taking Fourier transform of the VAC 

function.  The power spectrum gives the dynamic and vibrational properties of materials at 

elevated temperatures and also useful in predicting thermal effects on infrared or Raman spectra.  

The positions of peaks in the power spectrum give the frequencies of vibrational motions within 

the system being studied [8].  The frequency resolution of the power spectrum,  , is given by: 

 maxt


 

 (10) 

where tmax is time length of the analyzed data.  Fig. 8 and 9 display the VAC and power spectrum 

of G3 PAMAM dendrimers. 

C.4.  Radial Distribution Function and Structure Factor 

 A radial distribution function (RDF) is the spherically averaged distribution of 
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interatomic vector lengths within a system.  This information is useful in revealing overall 

structural properties such as packing, ordering, compressibility, and phase transitions.  The 

following expression is used to calculate the unnormalized radial distribution function between 

two selected groups of atoms, A and B: 

  



ji

BjAiAB rrrrg )( , (11) 

where, rAi is the position of the ith atom in group A and rBj is the position of the jth atom in group 

B. 

 

Figure 8.  VAC function computed for G3 PAMAM dendrimer. 
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Figure 9.  Power spectrum of G3 PAMAM dendrimer. The peaks correspond to the frequencies 

of vibrational motions within a G3 molecule. 

 

Once the RDF is calculated, the energy and pressure of the system can be readily 

obtained.  The potential energy per particle can be obtained from 

 



0

)()(
2

drrgruU AB


 (12) 

where, u(r) is the pair potential and  is the number density. 

The structure factor (SF) can be obtained by taking Fourier transform of the RDF. The SF 

enables one to gain information about overall structural properties such as packing, ordering, 

compressibility, and phase transitions.  It is particularly useful in that it can be directly compared 

with X-ray diffraction data.  The following 3D Fourier transform is used to calculate the SF from 

the RDF: 
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   rk







 

iergdr
N

kS ABAB  1)(
1

11)(   (13) 

where, k is the wave vector,  is the atomic density (=N/V), N is the number of atoms and V is 

the unit cell volume (for nonperiodic systems V = 1).  Fig. 10 and 11 display the radial 

distribution function and the structure factor for G3 PAMAM dendrimer. 

C. 5. The Dipole-Dipole Correlation and Dipole Power Spectrum 

The dipole moment is defined as the magnitude of the dipole vector.  The dipole vector 

and dipole-dipole correlation function can be calculated from MD trajectories.  The Fourier 

transform of the correlation function gives the dipole-dipole power spectrum.  The power 

spectrum of the dipole correlation function can be related to the infrared spectrum of the system 

being studied.  For a collection of point charges, the dipole vector is defined as: 

    COCCOC QQQdipole min802.4  (14)  

where, 4.802 is the factor necessary to convert the value to Debyes from angstroms and atomic 

charges, Qmin is the smaller absolute value of the total positive charge and the total negative 

charge, and 

COCQ  are the center of charge (positive or negative), given by 

 
 






i i

aii

COC
q

rq
Q

,
. (15) 

Here, the sums run over all positive or negative charges as appropriate, qi is the charge on atom i 

and ri,a are the x, y, or z component of the coordinates of charge i.  Fig. 12 and 13 display the 

dipole correlation function and the dipole power spectrum of a G4 PAMAM dendrimer. 
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Figure 10.  The radial distribution function of a G3 PAMAM dendrimer molecule. 

 
Figure 11.  The structure factor of generation 3 PAMAM dendrimer. 
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D. Summary 

 Molecular dynamics calculations have been carried out on poly(amido amine) dendrimers 

for generations 0 through 6 under Cerius2 environment on a Silicon Graphics computer.  

Dynamic properties have been predicted that are useful to understand the fundamental properties 

of these macromolecules.  For instance, the radii of gyration computed from simulation agree 

with experimentally determined values [8].  These predictions should be helpful in designing 

experiments to measure such properties. 

 

Figure 12.  Dipole autocorrelation function of a G4 PAMAM dendrimer. 
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Figure 13.  Dipole power spectrum of a G4 PAMAM dendrimer. 
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