Advances in Terahertz Spectroscopy Nanoscanner and Sub-surface 3D Imaging for Biomaterial

> Anis Rahman and Aunik K Rahman Applied Research & Photonics <u>http://arphotonics.net</u>

Presented at the 6th International Conference and Exhibition on Biosensors & Bioelectronics September 22-23, 2016 Phoenix, USA

Plan

- Intro to terahertz
- Integrated terahertz nano-scanning spectrometer
- Examples of spectral analysis
- Principle of non-destructive imaging
- Examples: sub-surface imaging @ 1 nm resolution
- 3D imaging of Cr³ nano-particles, semiconductor, quantum dots, etc.
- Layer by layer inspection
- Conclusions

Introduction

- Terahertz is able to penetrate most nonmetalic objects → sub-surface scanning
- It is non-ionizing → allows, non-destructive probing
- Penetrates → Sub-surface, interior of multilayered composite
- Nano-scale diagnosis of semiconductor wafer, paint, coatings, soft tissue, etc.

Motivation

- Deploying Terahertz to inspect under the surface
- To achieve 1 nm resolution
- Non-destructive, non-contact
- layer by layer imaging and spectral analysis
- Characterize 2D and 3D nanomaterials

Terahertz

Raman/IR covers ~250 to 4000 cm⁻¹ → Bond, torsion

THz covers 0.1 THz to ~35 THz (from ~3 to 1200 cm⁻¹) \rightarrow All kinds of resonances, Molecular backbone, intermolecular interaction

Terahertz generation

Technology	Advantages	Challenges
Electro-optic rectification (EOR)	 Easy alignment Broadband spectrum 	 Needs femto-s pulsed laser Limited output power Higher cost, Low efficiency
Difference Frequency Gen. (DFG)	 Tunable, Pulsed or CW Higher power (~mW) Broadband or narrow 	 Two lasers needed Difficult alignment Needs high \(\chi^{(2)}\) material
Dendrimer dipole excitation (DDE) → ARP	 No pulsed laser, no high voltage Tunable output power & range 	 New technology Dendrimer doping and poling
Photo-conductor	 Legacy technology 	 Low output power, ~µW High voltage & pulsed laser Limited THz range
Reactor Synchrotron	• Higher output power	 Huge in size and cost Limited THz range Needs dedicated facility
QCL	No pump laser	 Unstable, fixed bandwidth, low power, not tunable, fab

Difference Frequency Generation

Ref: U. Simon, C. E. Miller, C. C. Bradley, R. G. Hulet, **R. F. Curl**, and F. K. Tittel, "Differencefrequency generation in $AgGaS_2$ by use of single-mode diode-laser pump sources," OPTICS LETTERS Vol. 18, No. 13 / July 1, 1993, p 1062–1064.

Electro-optic Dendrimer

- The terminal groups each have two sites available for dopant
- A distribution of dipoles expected via chromophore doping.

$$\mu = ql$$

$$\Rightarrow \mu(x) = ql(x)$$

Molecular structure of a dendrimer (generation 3)

Electro-optic Dendrimer

- $W_{THz} \propto \chi^{(2)} W_{pump}^2$
- THz power \uparrow as $\chi^{(2)} \uparrow$
- $\chi^{(2)} = nf\beta \langle \cos^3 \theta \rangle$
 - *n* dipole density
 - f local field factor
 - $oldsymbol{eta}$ average hyperbolarizability
 - θ dipole alignment angle
- There are many chromophores to choose from

Dendrimer Dipole Excitation (DDE)

- Energy level diagram of dendrimer resulting from chromophore doping and poling
- A distribution of dipole moments creates CW broadband emission via DDE.
- No separate dispersion element needed
- Multispectral imaging

Live demo in booth #734

Principle of THz Spectroscopy

- THz radiation may stimulate many resonances such as molecular vibrations (in general molecular "events"), resulting in the THz photons being affected by characteristic amounts determined by a specific interaction or event.
- The change in energy yields information about the molecular nature of the interaction.
- Infrared and Raman spectroscopy yields similar information but not capable of detecting many resonant states as can be detected with THz.
- Spontaneous Raman scattering is typically very weak, as a result the main difficulty of Raman spectroscopy is in resolving the weak inelastically scattered light from the intense Rayleigh scattered laser light.

Potential energy of a diatomic molecule as a function of displacement during a vibration

Vibration-rotation spectrum of H-O-H bending mode of water vapor

Higher sensitivity is required to sense more "states"

Ref: Griffiths & de Haseth, Fourier Transform Infrared Spectroscopy, Wiley 2007

Terahertz penetrates

Terahertz penetrates through wood plank and other non-metallic objects
→ Applications in security and screening

Spectrometer Validation

Water vapor absorption spectrum obtained using the THz spectrometer compared to that calculated using the HITRAN database by the NIST. An expanded portion in the panel (b) containing pressure broadened water lines from NIST (c): Expanded view of vapor absorption lines obtained from ARP's TeraSpectra (see Fig. 5). Low frequency peaks match well with those reported by the NIST [1].

1. <u>http://arphotonics.net/WaterVaporComparison1.pdf</u>

Applied Research & Photonics -- Proprietary -- 05/31/2012

water spectrum

Ref. Darrell Burch, "Absorption of Infrared Radiant Energy by CO2 and H2O. III. Absorption by H_2O between 0.5 and 36 cm⁻¹ (278 u-2 cm)," Journal of the Optical Society of America, 58 (#10), 1383, 1968.

16

Applied Research & Photonics --- Proprietary

Water spectrum up to 40 THz

17

Validation from JLC group

ARP data validated by Prof. Coutaz

JLC data overlaps with ARP data

PE time-domain spectrum

- TeraSpectra reproduced absorbance peaks known from other methods
- Many peaks not visible previously were discovered.

Polyethylene comparison

Source	Reported (1/cm)	TeraSpectra (1/cm)
Sigma-Aldrich [7]	70.8	71
	723.3	722.5
	749.5	746.2
FreeSnell [6]	1466.02	1457, 1469
	1492.23	1486.4
		1510.0

[7] Polyethylene spectrophotometric grade,SIGMA-ALDRICH. http://thzdb.org/image.php?image=000000773

[6] FreeSnell: Polyethylene <u>http://people.csail.mit.edu/jaffer/FreeSnell/polyethylene.html</u>

DHS Test Sample

Applied Research & Photonics -- Proprietary -- 05/31/2012

Spectra of skin samples

Wafer spectra

Applied Research & Photonics -- Proprietary -- 03/03/2011

Skin spectra

Measured time-domain signal (interferogram) of skin samples with conditions. Left: healthy skin. Right: healthy, BCC, SCC, Lentigo

Absorbance spectra of 4 skins

Absorbance spectra close-up

Known water peaks are present. Others peaks may be assigned to the skin condition.

Layer by layer spectra

Reconstructive Imaging

Potential products

- THz Coherent Tomography
- Skin/tissue imaging
- Early stage cancer detection

Scale

Scale

Gridding with Inverse Distance to Power Equations

$$\widehat{C}_{j} = \frac{\sum_{i=1}^{n} \frac{C_{i}}{h_{ij}^{\beta}}}{\sum_{i=1}^{n} \frac{1}{h_{ij}^{\beta}}}$$
(1)

where, $h_{ij} = \sqrt{d_{ij}^2 + \delta^2}$,

- h_{ij} is the effective distance between grid node "j" and the neighboring point "i";
- \widehat{C}_{i} are the interpolated values for lattice node "*j*";
- C_i are the neighboring points;

 d_{ij} is the distance between grid node "j" and the neighboring point "i";

- β is the Power or weighting parameter; and
- δ is the Smooth parameter.

- 1. Davis, John C. (1986) *Statistics and Data Analysis in Geology.* John Wiley and Sons, New York, NY.
- 2. Franke, R. (1982) Scattered Data Interpolation: Test of Some Methods, Mathematics of Computations, v. 33, n. 157, p. 181-200.

3D nano-scanner/Imager

Scan X, XY, or XYZ for profiling and/or reconstructed imaging Angular scan for conformal imaging

A test wafer is mounted on the nanoscanner.

Reproducibility

Reproducibility of the traces. Very slight mismatch is due to the course resolution of the stage. This will improve by installing a higher resolution stage.

Relative position (µm)

changes in reflectivity based on material on wafer

high resolution scan revealing periodic pattern from adjacent segments of a wafer

Example: Cr3 on glass slide

200 nm x 200 nm close-up of a surface 1.7 nm.

High Resolution Analysis

Cr3 nanoparticles on glass slide. Smallest particle detected is ~8.5Å (<1 nm).

© 2016 Applied Research & Photonics

Terahertz imaging of stratum corneum

Reconstructive image of a piece of human stratum corneum

3D image of 20 micron cube

Closeup of 1 mm x 1 mm area. Small features visible

3D image of 10 micron cube

Image comparison

1 mm² stratum corneum after Cr3 permeation. Higher reflection

No Cr3, 10 cubic micron

After Cr3 permeation, 10 cubic micron

Image comparison

10 μm² stratum corneum alone Boundaries are well defined 10 μm² stratum corneum after Cr3 permeation. Boundaries are less prominent

3D image of skin

Reconstructed 3D image of healthy skin (left) and skin with basal cell carcinoma. Healthy sample was scanned over 1 mm \times 1 mm \times 1.2 mm and BCC sample was scanned over 1 mm \times 1 mm \times 1.5 mm. The top surface of healthy skin shows regular cell pattern (left) while the BCC samples has lost regular cell patterns and exhibit more agglomerated structure.

Layer by layer image

Benign

Basal cell carcinoma

9/20/2015

3D image analysis

layering seems patchy and different than normal skin.

and Lentigo skins.

Image comparison of different skin conditions

Skin Type	Front	Bottom	Left	Right-2
Normal				
Lentigo				
SCC				

Single cell analysis

Multiple cells \rightarrow

Isosurface analysis

Layer by Layer visualization

Layer by layer image

Thickness profile

Diffusion kinetics

• Fick's first law:

$$J = -D\frac{\partial C}{\partial x}$$

- C is the concentration and
- **D** is the diffusion coefficient
- Fick's second law:

$$\partial C/\partial t = D \frac{\partial^2 C}{\partial x^2}$$

Permeation Kinetics

Example: Permeation kinetics of DI water in glossy paper

Concentration gradient

$$\left|\frac{\partial C}{\partial x}\right|_{Analyle} = \left|\frac{\partial C}{\partial x}\right|_{Before} - \left|\frac{\partial C}{\partial x}\right|_{After}$$

Hydrocortisone Kinetics

Stratum Corneum mounted on the sample holder

Kinetics of permeation of two solutions in to stratum corneum: Red: Propylene glycol Blue: 1% hydrocortisone in propylene glycol

Concentration gradient of Hydrocortisone

Semiconductor imaging

Stacking fault in SiGe layer [11]

TEM image of actual sample

Stacking fault

 $1 \ \mu m^3$ volume of D02

1 µm³ volume of D10

Layer thickness

200 nm³ close-up of D10

100

Distance (nm)

50

0

200

150

Vertical cross-section surface, 1 μ m x 1 μ m. (b) Analysis along the yellow line in (a) shows the top layer is ~ 600 nm. However, some non-uniformity is visible in the top layer thickness.

Quantum dot imaging

PXRD and TEM analysis shows the Agl quantum dots are $\sim(11 \pm 4.5)$ nm.

100 nm³ volume (close up) extracted from the 5 μ m³ scanned volume.

QD size analysis

Conclusions

- Integrated Terahertz nanoscanning spectrometer may be used for biomedical imaging/tomography
- Spectroscopic investigation of soft tissue
- THz is a unique tool for nano scale characterizations
 - Non-destrctive, Non-contact, sub-surface
 - Inspect 2D and 3D materials
 - Lattice defects, stacking faults
 - Defects, cracks, non-uniformity, inclusion, phases, etc.
- All non-metals: Semiconductors, laminates, etc.
- Both quantitative measurement and visual
- High sensitivity multispectral imaging and analysis
- Collaboration available and interested.

Thank you for your attention **Questions are welcome Contact:** Anis Rahman info@arphotonics.net +1-717-623-8201